Sequence Tolerance of a Highly Stable Single Domain Antibody: Comparison of Computational and Experimental Profiles
نویسندگان
چکیده
The sequence fitness of a single-domain antibody with unusually high thermal stability is explored by a combined computational and experimental study. Starting with the crystallographic structure, RosettaBackrub simulations were applied to model sequence-structure tolerance profiles and identify key substitution sites. Experimental site-directed mutagenesis was used to produce a panel of mutants and their melting temperatures were determined by thermal denaturation. The results reveal an excess stability margin of approximately 12 °C, a value taken from a decrease in the melting temperature of an electrostatic charge reversal substitution in the CRD3 without a deleterious effect on the binding affinity to the antigen target. Tolerance for disruption of antigen recognition without loss in thermal stability was demonstrated by the introduction of a proline in place of a tyrosine in the CDR2, producing a mutant that eliminated binding. To reconcile the differences between the modeled energies and their relationship to the observed experimental changes in melting temperatures, an approximation was developed by combining a statistical potential with a linearly scaled implicit solvent model to calculate the net contribution from a two-state model of folded and unfolded conformations. The derived computational model improves prediction accuracy and should prove applicable to other designs
منابع مشابه
Construction of recombinant Pichia pastoris expressing single-chain antibody fragment against extracellular domain of EpCAM
Introduction: Epithelial cell adhesion molecule (EpCAM) is highly expressed on epithelial tumors. So, EpCAM is a valuable antigen for targeted therapy. Using monoclonal antibodies (mabs) is an attractive approach for targeted cancer therapy. Importantly, limitations of intact mabs including large size led to the development of antibody fragments such as single chain fragment variable (scfv). Pi...
متن کاملP-85: How a Frame Shift Caused by a Single Base Deletion In SEPT12 Gene Shed Lights As a Polymorphism
Background: Septins are members of highly conserved polymerizing GTP binding proteins well described in the animal kingdom. 14 Septin proteins have been characterized in humans (SEPT1-SEPT14), some of which are tissue-specific. All of 14 genome-mapped human septins contain a highly conserved central GTP-binding domain which is very critical in GTPase signaling properties as well as oligomerizat...
متن کاملSimple Sequence Repeats Amplification: a Tool to Survey the Genetic Background of Olive Oils
A reliable DNA extraction method for use on extra virgin olive oil based on a commercial kit was defined, and the possibility of using this DNA for fingerprinting the original cultivar was demonstrated. The genetic traceability of single-cultivar virgin olive oil from two cultivars (Carolea and Frantoio) was achieved by identifying the varieties from which they were produced. This involved the ...
متن کاملA comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test
In this research, the modal parameters of a beam in free-free condition are extracted by performing different experiments in laboratory. For this purpose, two different techniques are employed. The first methodology is considered as a time domain method in Operational Modal Analysis. While the other one is frequency domain impact hammer test which is categorized as an Experimental Modal Analysi...
متن کاملIn silico analysis for determining the deleterious nonsynonymous single nucleotide polymorphisms of BRCA genes
Recent advances in DNA sequencing techniques have led to an increase in the identification of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further information regarding the deleterious probability of many of them is available (Variants of Unknown Significance/VUS). As a result, in the current study, different sequence- and structure-based computation...
متن کامل